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Abstract. Generative adversarial networks (GANs) have been highly
successful for generating realistic synthetic data. In healthcare, synthetic
data generation can be helpful for producing annotated data and improv-
ing data-driven research without worries on data privacy. However, elec-
tronic health records (EHRs) are noisy, incomplete and complex, and
existing work on EHR data is mainly devoted to generating discrete ele-
ments such as diagnosis codes and medications or frequent laboratory
values. In this work, we propose SMOOTH-GAN, a novel approach for
generating reliable EHR data such as laboratory values and medications
given diagnosis codes. SMOOTH-GAN takes advantage of a conditional
GAN architecture with WGAN-GP loss, and is able to learn transitions
between disease stages with high flexibility over data customization. Our
experiments demonstrate the model’s effectiveness in terms of both sta-
tistical similarity and accuracy on machine learning based prediction.
To further demonstrate the usage of our model, we apply counterfactual
reasoning and generate data with occurrence of multiple diseases, which
can provide unique datasets for artificial intelligence driven healthcare
research.

Keywords: Generative adversarial networks · Electronic health
records · Synthetic data generation · Counterfactual machine learning

1 Introduction

Electronic health records (EHRs) include rich information to support artificial
intelligence (AI) driven healthcare. Analyzing EHR data has many practical
applications such as predicting mortality [3], phenotyping diseases [6], detecting
missing/missed diagnosis codes [17] and predicting unplanned readmissions [2].
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In the meantime, EHR data is difficult to access due to privacy protection. It is
also noisy, incomplete and complex, thus difficult for researchers to work with.
Generating synthetic EHR datasets can help both AI and medical communities
to share datasets for developing new algorithms and comparing results.

Synthetic data generation can provide the opportunity for researchers to
share large datasets without privacy concerns and improve the quality of studies
with competitive and reproducible experiments. Having a reliable data generator
can also be useful for augmentation tasks and building more robust machine
learning models that can potentially provide new insights into how models can
interpret and capture patterns from EHR data. However, for a various number of
reasons including, but not limited to, large dimensions, longitudinal irregularity,
missing values, and heterogeneity it is more challenging to provide synthetic data
generation for EHR data, compared with other applications such as imaging.

Generative adversarial networks (GANs) are generative models for creating
realistic synthetic data based on an adversarial process which are proven to
be more effective than their statistical counterparts [10]. GANs have been very
successful with image generation, and there are many interesting applications of
GANs such as real images augmenting with Invertible Conditional GANs [16].
This success inspired studies to adapt strategies to tabular data [19].

In recent years, the concept of counterfactual reasoning has gained attention
within the machine learning community as one of the potential methods for
explainable AI and generating never-before-seen patterns [13]. This concept has a
lot of potential in AI driven healthcare, where physicians encounter new patterns
among diseases and are skeptical about black box models. Such patterns can be
potentially uncovered through GAN based methods.

In this paper, we take advantage of GANs for high quality synthetic data gen-
eration and data augmentation, and explore how the models can track patients
over the course of their disease using EHR data. Instead of a human-based
perception of disease progression by a clinical expert, we are interested in under-
standing how the models can observe and capture these patterns. We believe
these observations can help building more robust models and provide essential
knowledge for understanding decisions made by neural networks. We will first
introduce SMOOTH-GAN (Sharp sMOOTh eHr), a new approach for gener-
ating synthetic EHR data, and then, we will provide in-depth analysis of the
models generated by defining new metrics and concepts. At the end, we explore
an application of counterfactual data generation.

2 Related Work

Recently, generating synthetic EHR data using GANs has become an active
research area. However, there is limited work due to several challenges associated
with EHR data. One notable project is MedGAN which focuses on generating
discrete data elements -medications and diagnosis codes- by adding an addi-
tional encoder decoder inside the GAN architecture [7]. Another inspiring work
is RCGAN which provides a framework for generating frequent sequences using
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conditional recurrent GANs designed for medical time series data [8]. Moreover,
the SSL-GAN augments medications and diagnosis codes for improving classifi-
cation tasks with a semi-supervised learning approach [5].

In this study, we design a conditional GAN which generates both medications
and laboratory values for given diseases. Our work has the following salient fea-
tures. First, the generator generates both continuous and binary values and there
is no need to have separate generators. Secondly, we created new methodology
to have more control over conditions, which can help with generating patients
with different stages of disease. Furthermore, conditions in SMOOTH-GAN can
be combined together, creating more realistic and diverse encounters.

3 Data

We extracted inpatient encounter data for adults (≥18) from the Cerner Health-
Facts database, a large multi-institutional de-identified database derived from
EHRs and administrative systems. From the 10 highest volume inpatient facil-
ities, we randomly chose one acute-care facility (143) and extracted encounters
with at least one diagnosis code, laboratory value, and medication from 1/1/2016
to 12/31/2017. We used 47,412 encounters that were broken into 80% for the
training set and the rest for the test set.

As multiple values for each laboratory test exist for an encounter, we take
the median of each test for each encounter. For medications, we consider them
binary whether they were ordered or not. After filtering out features with less
than 5% occurrence rate to reduce sparsity and noise, 166 features remained.
Diagnosis codes for 5 major chronic conditions, hypertension, congestive heart
failure (CHF), diabetes mellitus, cardiac arrhythmias, and chronic kidney disease
(CKD) were defined according to [18] and used in this study.

4 Methods

We first briefly review the GAN concept and the architecture we are adapting,
and then discuss the details of our algorithm and methods.

4.1 Generative Adversarial Networks Concept

A GAN is normally comprised of two neural networks, which compete with
each other in a minimax game: a discriminator and generator. The generator’s
G(z; θg) goal is to generate samples intended to come from the same distribution
as the training set, where z is random noise usually from the normal distribution.
The discriminator D(x, θd) tries to detect whether the samples generated by the
generator are real or fake. Ideally, the data distribution by G (pg) should be
the same as the real data distribution (pdata) [9,10]. Conditional GANs are
extensions where generators generate data based on some extra information as
conditions or labels [14]. The formal optimization formula is:

min
G

max
D

V (θg, θd) = Ex∼pdata
[log(D(x|y)] + Ez∼pz

[log(1 − D(G(z|y))]
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where θg, θd are parameters for the generator and discriminator, and pz is the
normal distribution. The ideal generator would create authentic samples similar
to the training set that force the discriminator to guess randomly. y is the vector
condition, which is given to both the generator and the discriminator in cgan
architecture. We adapted Wasserstein-GAN with gradient penalty (WGAN-GP)
as the loss function in this work. It has several advantages including not suffer-
ing from the gradient diminishing problem during training and producing more
robust results [1,12]. The discriminator becomes critic in this method which
assigns a real value score instead of a binary value.

4.2 SMOOTH-GAN

The SMOOTH-GAN is a conditional GAN adapting WGAN-GP for healthcare
data. Its main objective is to generate high quality EHRs, including laboratory
values and medications, given diagnosis codes as conditions. We refer to diagno-
sis codes as set C, where c ∈ {0, 1}|C| is a random set of conditions, and the ith

dimension ci shows presence or absence of ith disease in a patient’s encounter
record. In EHR data, diagnosis codes are recorded as binary values indicating
which diseases patients have. Although having a disease is a binary status, reach-
ing the certain threshold to have the disease is in a probabilistic continuous space
for most chronic diseases. For instance, patients with a “hemoglobin A1C” of 6.0
and 4.5 are both below the threshold of diabetes, but the first patient is closer
to being a positive case and has a higher risk of getting diabetes. However, in
EHR data both of these patients are labeled as 0.

A generative model needs to be reliable and adjustable to have practical
usage. We observed by generating a GAN model directly with those binary
values as conditions, the generated data in many cases was borderline and did
not pass the cutoff for that disease. The GAN was learning broad patterns and
the control of the output was limited. The outcome was not deterministic by
input conditions and was highly dependent on random variables.
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Fig. 1. Illustrating how the heuristic function is added to the model.
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Based on the issued discussed above, we added a unit which would change the
GAN input conditions to smooth labels. Note that assigning an exact probability
is a very difficult task, especially when the definition of what is the probability
is debatable. Therefore, we are looking for a heuristic function that given binary
conditions and input data, can estimate the condition in a continuous space,
H(c, x) = c̃ where c̃ ∈ [0, 1]. Although finding the perfect function for assigning
probabilities/risk scores to encounters is an active field of research in healthcare,
finding a heuristic function simplifies the task and provides a fast solution. The
architecture is shown in Fig. 1.

There are different ideas and models to use as the heuristic function. We use
random forest (RF) models as the core part of this heuristic function in this
work. These models can be trained on the training set and assigns probabilities
for each disease accordingly. When the estimated probability is in contrary with
the original label, we adjust it to the center (0.5). It is necessary that the model
can label the majority of each class correctly. We demonstrate how the model is
capable of generating more diverse synthetic data with traceable disease progress
by using c̃ instead of c in training the GAN in Sect. 5.3.

Training Details. The generator has two leakyRelu hidden layers with α = 0.2
each one is followed by a batch normalization layer and tanh output layer. The
critic has two leakyRelu hidden layers with α = 0.2 and linear output layer.
The critic is trained 5 times more than the generator in each epoch. Moreover,
the heuristic function is pre-trained in advance (RF models). The model was
trained for 600 epochs. Data is scaled to [−1, 1] and outliers with Z-score more
than 4 are removed for non-binary features before the median imputation.

5 Results

In this section, we provide in-depth analysis of our GAN method and innovative
applications. We used random forest as the prediction model since we needed to
know the important features and output probability of inputs for most experi-
ments. To have a reasonable comparison, the synthetic dataset is generated given
a set of conditions similar to the training set.

5.1 Statistical Analysis

The first step is to measure how the synthetic data distribution fits to the real
training set. We measured the mean absolute error (MAE) for means and stan-
dard deviations of columns and element-wise Pearson correlations as shown
in Table 1. For medications which are binary values, we calculated MAE for
dimension-wise probability. The Loss functions based on Wasserstein distance
have robust progress even when data is partially binary. Figure 2 shows heatmaps
of Pearson correlations for real and synthetic data.
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Training data Synthetic data

Fig. 2. Heatmap for 15 features with highest correlation. MC: Manual Count, AC:
Automated Count, S/P: Serum or Plasma, L: lab value, M: medication

Table 1. Mean absolute error for statistics between real and synthetic data

Method name Laboratory
mean

Laboratory
std

Medications
prob

Correlation

cGAN 248.10 22.92 0.382 NaN

AC-GAN 79.49 14.53 0.068 0.196

WGAN 1.33 5.39 0.007 0.058

WGAN-GP 0.80 1.77 0.003 0.039

SMOOTH-GAN 0.68 2.29 0.003 0.039

5.2 Synthetic Data Prediction Models

One major goal of generating synthetic data is to use it in place of real data
when training machine learning models. We are comparing RF models trained
on real training data and generated data with the same real test set which was
untouched in Table 2. This experiment has become the main metric to measure
a GAN’s success in related publications [7,8,19]. Moreover, it is critical that
the synthetic model is making predictions based on similar factors to the real
training set. Otherwise, GANs might have altered other features correlated with
the input conditions and generated new patterns which is undesired. The last
rows of Table 2 show the number of overlapping features in the top 15 most
important features of both the synthetic and real trained models. Note that
AC-GAN is designed for mutually exclusive input conditions [15].
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Table 2. Performance of trained RF models on synthetic and real data measured
on real test set. “#/15” represents number of common features with top 15 most
important features identified by real RF model.

Disease name Metric Real cGAN WGAN AC-GAN WGAN-GP SMOOTH-GAN

Hypertension AUROC .8822 .5896 .8434 .5165 .8515 .8625

AUPRC .7965 .3929 .7474 .3324 .7562 .7688

#/15 - 2 8 2 8 9

Diabetes AUROC .9357 .5849 .8412 .5759 .8641 .8708

AUPRC .8905 .3821 .7702 .3872 .8061 .8089

#/15 - 2 9 2 11 11

Congestive heart failure AUROC .9000 .5663 .8239 .5795 .8619 .8633

AUPRC .7471 .2483 .5885 .2708 .6551 .6577

#/15 - 3 8 2 9 12

Chronic kidney disease AUROC .9544 .6331 .9386 .4240 .9404 .9380

AUPRC .8705 .3654 .8380 .1740 .8384 .8321

#/15 - 3 9 1 10 12

Cardiac arrhythmias AUROC .8110 .5191 .7065 .4791 .7564 .7512

AUPRC .7037 .3609 .5825 .3353 .6352 .6144

#/15 - 3 5 4 7 8

5.3 Smooth Conditions, Sharp Synthetic Data

The ideal conditional generator should be capable of generating high quality
data according to given conditions. Here we define two terms, sharpness and
smoothness. The generator must be sharp as generated data reflects attributes
of given conditions clearly when expected. For instance, a patient with 100%
chance of diabetes must have obvious observations/or medications. Second, it
must be smooth, which means that it has control over what is generated with a
realistic continuous distribution of the data. In other words, it should learn to
transit between disease stages, which is natural for chronic diseases. Sharpness
is more obvious at the boundaries, aka disease chances are closer to 0 or 1, while
smoothness is a characteristic for transitions between stages.
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Cardiac arrhythmias Congestive heart failure Chronic kidney disease

Diabetes Hypertension

Fig. 3. Gradually increasing input conditions to measure average probability of gener-
ated data according to the random forest model trained on real data.

Having a set of conditions C̃, for the ith disease, we changed c̃i increasing
from 0 to 1 by 0.1 steps gradually while all other c̃j (where j �= i) remained the
same as conditions passed for training the GAN. This process lead to creation of
11 data groups. For each group, we measured the average probability assigned by
the random forest model trained on real data. Results are shown in Fig. 3. The
ideal result in this model would be the solid diagonal line, where for given input
condition generated data would get similar probability by the model trained on
real data. Considering gi as the average for the ith group and n as the number of
steps (here n = 10), we define sharpness = (g0−0)+(1−gn) and smoothness =
(
∑n

i=0 | in −gi|))/(n+1). In both metrics lower magnitude is better. As a baseline,
when probabilities of all groups are 0.50 (horizontal line in middle), the sharpness
and the smoothness are 1 and 0.27 respectively.

Training with smooth labels decreased the sharpness and the smoothness
from 0.86 and 0.23 to 0.69 and 0.18 average among all diseases. Of note, the
other conditions in the input also affect the output of the generator. For this
reason, reaching absolute 0 or 1 probability over a reasonable set of conditions
is unrealistic. For instance, a passed vector condition with high diabetes and
hypertension with exactly 0 % chance of CKD is not possible. This can explain
why the curves are bent when they get closer to 0 or 1.
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Table 3. Sample synthetic CKD cases generated.

# Lab name Initial CKD GAN input probability

State 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 BUN 54.03 37.82 38.12 40.31 43.99 48.98 53.58 58.59 63.60 67.62 70.79 73.21

Creatinine 1.53 0.70 0.76 0.88 1.05 1.27 1.50 1.81 2.31 2.92 3.63 4.35

GFR 27.32 85.49 76.52 64.23 50.61 38.45 28.22 19.47 13.14 8.67 5.82 4.18

2 BUN 33.90 29.60 30.09 31.09 32.90 35.29 38.60 42.07 45.19 47.49 48.97 50.73

Creatinine 0.58 0.41 0.42 0.46 0.53 0.64 0.78 0.98 1.23 1.52 1.87 2.29

GFR 84.76 100.85 97.51 93.70 87.63 79.58 69.58 56.57 43.04 31.38 22.59 15.78

In Table 3, we show how samples made by the SMOOTH-GAN change over
given CKD conditions for three important features: blood urea nitrogen (BUN),
glomerular filtration rate (GFR) and creatinine in serum/plasma. The initial
state is what is generated by passing a set of random conditions and random
noise to the generator. We set the CKD condition from 0 to 1 to get a spectrum
of potential states for this encounter.

5.4 Counterfactual Disease Generation

Generally, counterfactuals are hypothetical “what would happen/have happened
if” questions. We designed a very specific experiment to show GANs can also be
used for generating special combinations of diseases in healthcare. We removed
all cases with both hypertension and diabetes from the training set, and we call
this new set the “pruned training set”. Then we trained our GAN on this new
training set to measure whether the model can produce acceptable encounters
having both conditions. We chose these two diseases to have a reasonable amount
of data for validating the results as this combination happens often in EHR data.
Similarly, we measure machine learning efficacy as the ultimate test. In Table 4,
we measure RF performance when trained on 1) real data 2) synthetic data
from a GAN model trained on the original training set 3) synthetic data from
a GAN model trained on the pruned training set. We observe that while the
pruned model does not outperform other models in detecting positive cases, it
has captured a significant amount of the existing patterns.

Table 4. Performance for counterfactual disease generation

Disease name Metric Real Original
training set

Pruned
training set

Hypertension & Diabetes AUROC .9106 .8720 .8317

AUPRC .7122 .6223 .5252

# /15 – 10 8



46 S. Rashidian et al.

There are several challenges for this type of experiment. First, for disease
pairs that usually occur together, there might be very few examples of either
disease alone. Thus, the pruned dataset would be inefficient. For instance, 88%
of patients with CKD also had hypertension. Secondly, the combination of two
diseases might be rare when diseases are less relevant to each other, leaving the
validation set very small. Last, it is time consuming to train a GAN model for all
permutations. We believe that this approach has high potential and can lead to
the discovery of novel patterns, which we will further study with larger datasets
in our future work.

6 Conclusion

In this paper, we propose SMOOTH-GAN, a new approach for generating syn-
thetic EHR data based on recent advances in generative adversarial networks.
We show it is possible to produce high quality synthetic data that maintains
important relations and factors in the original data and can be useful for train-
ing competitive machine learning models. We define sharpness and smoothness
as vital concepts which are applicable in other domains as well. Furthermore, we
demonstrate how to create synthetic EHR data with meaningful clinical impli-
cations. By combining this approach and Invertible cGANs it is possible to aug-
ment existing patient data, as well as helping to produce more accurate machine
learning models. Our approach opens doors to new research opportunities and
has high potential for generating unseen combinations to support novel research
projects such as counterfactual use cases.

Acknowledgments. Authors wish to thank Aryan Arbabi for his constructive
comments.

A Appendix

A.1 Binary Data Distribution

As GANs were known to struggle with generating binary values, we added Fig. 4
to illustrate dimension-wise probability for medications comparing real versus
synthetic data.
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cGAN AC-GAN WGAN

WGAN-GP SMOOTH-GAN

Fig. 4. Dimension-wise probability performance for binary values.

A.2 Is Training Data Memorized by the GAN?

For ensuring privacy and discovering whether the GAN is generating new cases
or memorizing the training set, we followed the footsteps of [8] by measuring
maximum mean discrepancy (MMD) and applying the three-sample test [4,11].
MMD can answer whether two sets of samples were generated from the same
distribution. If the synthetic data is memorized then MMD(synthetic, train-
ing) would be significantly lower than MMD(synthetic, test). For this reason,
we state the null hypothesis as GAN has not memorized the training set, and
consequently MMD(synthetic, test) ≤ MMD(synthetic, training). We sampled
from these three datasets 35 times and calculated MMDs and p-values for the
hypothesis. The mean p-value with its standard deviation is 0.26 ± 0.15 which
means we cannot reject the null hypothesis and we can establish that GAN did
not memorize from the training set.

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: International Conference on Machine Learning. pp. 214–223 (2017)

2. Ashfaq, A., Sant’Anna, A., Lingman, M., Nowaczyk, S.: Readmission prediction
using deep learning on electronic health records. Journal of biomedical informatics
97, 103256 (2019)

3. Avati, A., Jung, K., Harman, S., Downing, L., Ng, A., Shah, N.H.: Improving
palliative care with deep learning. BMC medical informatics and decision making
18(4), 122 (2018)

4. Bounliphone, W., Belilovsky, E., Blaschko, M.B., Antonoglou, I., Gretton, A.: A
test of relative similarity for model selection in generative models. arXiv preprint
arXiv:1511.04581 (2015)

http://arxiv.org/abs/1511.04581


48 S. Rashidian et al.

5. Che, Z., Cheng, Y., Zhai, S., Sun, Z., Liu, Y.: Boosting deep learning risk prediction
with generative adversarial networks for electronic health records. In: 2017 IEEE
International Conference on Data Mining (ICDM). pp. 787–792. IEEE (2017)

6. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: pre-
dicting clinical events via recurrent neural networks. In: Machine Learning for
Healthcare Conference, pp. 301–318 (2016)

7. Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W.F., Sun, J.: Generating multi-
label discrete patient records using generative adversarial networks. In: Machine
Learning for Healthcare Conference, pp. 286–305 (2017)
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