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Motivation

e Deployment of large DNN models
e Edge Computing
o Examples - Jetson lineup
o Battery-Operated
o Deployed in resource scarce
environments
e Large parameter space to optimize

o Hardware parameters
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Introduction

e Sustainable DNN workload deployments on the Edge

e Study the impact of hardware parameters

m CPU frequency
m GPU frequency

e Compare the performance of multiple Deep Learning workloads on default device

configuration vis-a-vis adjusting CPU and GPU frequencies for optimal energy usage
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Experimental Setup

e Power readings for each edge device are polled at 100ms intervals
o Overhead for 100 ms < 0.5%; Overhead for more frequent polling (10 ms or 1 ms) > 2%
e PyTorch for all the workloads except for YOLOv4 (OpenCV)
e |2C interface is polled in a separate thread for more granular readings
e Each experiment on a given model
o One out of x CPU+GPU Freq combinations
o Fixed workload - 3200 inferences inputs

o 10 reruns; variance was less than 5%
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Experimental Setup - Device Specifications
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Specification

Jetson Nano

Jetson Xavier NX

CPU Al

4 corc ARM AS7

2_core Nvidia C N

102 MHz - 1.48 GHz

115 MHz - 1.9 GHz

CPU Freq. rangcl
CPU Freq. step I
| =~

100 MHz (15 steps)

77 MHz (25 steps)

GPU  INvidia Maxwcll NVIDIA volia
CUDA Cores 128 384

Tensor Cores - 48

Memory | 4 GB LPDDR4 8 GB LPDDR4

F
GPU Freq. rang_cl

76 MHz — 921 MHz

114 MHz — 1.1 GHz

GPU Freq. stcpsl

77 MHz (count 12)

90 MHz (count 15)

Throughput

| -
X72 GI'LOPs

1 TOFS

Power Modes

SW, 10W

1OW, 15W

Libraries

CUDA 10.2 + cuDNN
8.2.1

CUDA 10.2 + cuDNN
8.0.0
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Experimental Setup - Workloads

e The workloads chosen span across 3 different categories of Deep Learning

usSe-cases.
o Image Classification (AlexNet, ResNet-18, MobileNet)
o Object Detection (YOLOV4 - Tiny)
o Natural Language Classification (BERT-Tiny, distilBERT)
e MobileNet, BERT-Tiny, DistiiBERT, and YOLOv4-Tiny are tailored for edge devices,

characterized by their lightweight architecture and efficient performance.
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Evaluation - Frequency Sweeps on Nano

e DVFS Governor
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Evaluation - Energy usage trends on Nano

Minima = 262.6 Joules
— DVFS = 303.7 Joules
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GPU Freq substantially impacts Energy
but not monotonic

Minima consumes 13% lower than DVFS
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Evaluation - Energy usage trends on Nano
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Evaluation - Energy usage trends on Xavier NX
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‘ Not monotonicity of GPU and CPU Freq is more prominent

‘ Minima consumes 2%, 13%, 15% lower energy than DVFS ‘
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IMPACT OF OTHER FACTORS:

e Compared to LibTorch implementation in C++, python implementation in PyTorch
consumes 16% more energy due to python overheads

e However, LibTorch is not commonly used during prototyping due to ease of usage of
Python and compilation overheads

e LibTorch is commonly used in high performance systems due to its energy and
latency benefits

e Impact of turning off lazy-loading and garbage collection were found to to 1.82% and
1.65% reduction in total energy, respectively
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Conclusion

e Selecting optimal freq configuration gives upto 19% savings in energy for Jetson
Nano as compared to DVFS

e Selecting optimal freq configuration gives upto 15% savings in energy for Xavier
NX as compared to DVFS

e Energy savings at the are not free!!! Latency trade-offs to the tune of 28% - 35%
are observed
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Experimental Setup

Power readings for each device are polled at 100ms intervals

o Overhead for 100 ms < 0.5%; Overhead for more frequent polling (10 ms or 1 ms) > 2%
PyTorch for all the workloads except for YOLOv4 (OpenCV)

150 CPU/GPU Freq combinations for Nano and 375 combinations for Xavier NX
Each experiment consisted of running a DNN inference workload with a specified
batch size under a specific CPU and GPU frequency setting

Each workload in a given experimental configuration was repeated 3200 times and
each experiment was repeated 10 times

Variance in energy readings for the all the experimental configurations was much less

FARthan 5%
BEYOND 14




